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BIMODAL FISSION IN THE SHELL-CORRECTION APPROACH
V.V.Pashkevich, A.S3ndulescu

It is shown that in the theoretical description
of the fission process in the nucleus 2®*Fm there
turn out to be two valleys on the potential-energy
surface in the region of the scission point, One
valley corresponds to the compact configuration of
two nearly spherical fragments; and the other, to
more separated strongly alongated fragments. Only
mirror-symmetric shapes were considered.

The investigation has been performed at the La-
boratory of Theoretical Physics, JINR.

bumopansHoe penenme B pamkax MeToAaa
obonoueuHol nonpasBku

B.B.MamkeBuu, A.CaHgymecky

llokasano, 4To npu TeopeTHYECKOM OmMMCAHHM Oelle Hust
anpa 264py  BGnU3M ToukM paspmBa uMewTCs [Be [OMHHbI,
BeAymue K nesjieHuio. OBHa COOTBeTCTBYeT 6MM3KO pacmo-~
JIOXEHHHIM HOYTH ChepHYeCKHM OCKOjIKaM, Opyras - Gojiee
YRAJIEHHHMM APYT OT APYra BHITAHYTHIM OCKOIKaM. PaccMoT-
. beHHeé OrpAaHHYEHO 3epKANBHO CHMMETPHYHBIMH (GOpMaMy.

Pa6Gora BmmosiHeHa B JlaGopaTopun TeopeTHUYeCKoOld bu-—-
3uku OUAH,

The recently observed bimodal fission’!, i.e., two
symmetrical modes, one of which has a broad and the
other a narrow fragment mass distribution, was described
by the authors as liquid-drop and shell-fragment-direc—-
ted modes, respectively. Our aim is to show that both
modes can be described in a unified manner by the Stru-
tinsky shell-correction method’?%, We consider the simp~
lest, for the theory, case of the hitherto not observed
fission of 284Fy, in which the influence of the shell of
the two magic fragments of 13%n is apparently the
strongest one. The dramatic manifestation of the role
of the nearly spherical magic fragments has recently
been demonstrated in the strongly asymmetric fission of
a series of nuclei/4-7/,

As will be shown later, on the surface of the poten~
tial energy for 264py there exist two valleys leading
to fission. One of them corresponds to a compact confi-
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"guration with closely located gpherical fragments, and
the other to more separated strongly deformed shapes. For
simplicity we restrict ourselves to mirror-symmetric
shapes. Asymmetric variations of the shapes are also of
great interest because they permit describing, for example,
two close spherical fragments of different volumes or
one near spherical and the other strongly deformed frag-
ments’%, They also allow one to estimate the width of
the fragment mass distribution. However, the agymmetric
shapes will be considered elsewhere.

For the description of the expected shapes of nuclei

it is important to choose a rather unrestricted parametri-
zation of the nyuclear-gurface shape. From this point of
view the description of the nuclear surface appears to
be most appropriate in the coordinate system, connected
with Cassinian ovals’/?®/, Denoting the respective coordi-
nates by (R, x), we present the equation of the curve that
describes the cut of the surface of an axially-symmetric
nucleus by the meridional plane in the form

R =R(x), -1<x<1, | (1)

As a particular case, the Cassinian ovals are described
by the equation

R = const, (2)

and a small deviation from the Cassinian ovals can be
expanded in a series in the Legendre polynomials

R
R=-2(@Q+3a P (x)), , 3)
c m 0 m

where Ry is the radius of a spherical nucleus of the
same volume and the constant ¢ is chosen to satisfy the
volume conservation condition during the deformation.

If the distance between the foci of the Cassinian
ovals is equal to zero, then (R,X) turn out to be the
spherical radius and the cosine of the polar angle, res-
pectively, The connection of (R,x) with cylindrical co-
ordinates is given in ref./8/ (see also ref./%/),

The coefficients a, are the parameters that specify
the shape of the nucleug. Another parameter,a, is used
which is connected with the distance between the foci
of the Cassinian ovals and gpecifies the general elon-
gation of the nucleus’8’,

The method of calculating the potential energy sur-
face used here is described in detail in ref.’®’, Here
we only note that the deformation energy, E, is the sum
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of the two terms, the liquid-drop component, Epprand the
shell correction, 8E,

E=E;+8E. | (4)

The phenomenological expression for ELp from refs/10.11/
was used and the shell component 8E was calculated on
the basis of the single-particle spectrum in a Woods-
Saxon-type potentiaY%2—14/ which parameters taken from
ref/15/ However, for qualitative effects discussed here
the exact values of the parameters are unimportant,

In the approach used here it is possible to uniformly
describe the shapes of a nucleus in the fission process
from the ground state through the scission point, and for
our purpose it is sufficient to consider only the cross
section of the potential energy surface at a fixed value
of the parameter @ equal to 0.98 which, in the liquid
drop approach, corresponds, according to the neck thick-
ness, to the shapes for which scission takes place’18/,
For the parametrization chosen here the thickness of the
neck equals zero at @ = | for any values of all the other
parameters ap

The energies E andEjp (see eq.(4)) are depicted in
fig.l1 as functions of the hexadecapole deformation a,.
The ¢y parameter remains fixed, ag = 0, because its small
variations are strongly correlated with those of «.

It is seen that E has two minima. which stand for
the two fission valleys. The deeper one corresponds to
near spherical fragments and the shallow one to strongly
deformed fragments. The shape of the nucleus in both
minima is drawn in fig.2. Accordingly, a larger total
kinetic energy of the fragments is expected to be relea-
sed in the former case and a noticeably lower one in
the latter. The depth and position of the deep minimum
remains almost unchanged after taking into account the
higher deformations ap, , while minimization with respect
toa, , @ anda, 1leads to a shift of the position and
a strong deepening of the shallow minimum (see the open
points connected by a solid curve. in fig.1). The two
valleys are separated by a 5.6 MeV ridge over the higher
valley, so that one can speak about a good separation
of the valleys near the scission point. The stability
of both minima against asymmetric variations of the shape
was not considered in the present paper.

Thus, the existence of twop well separated valleys
in the region of the scission point of 284Fm was demon-
strated in a unified approach. The shape of the nucleus
near the bottom of the valley corresponding to a compact
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configuration is well approximated by two spherical
fragments, which to some extent justifies the model of

two spherical fragments used,

for describing that mode of fission.

in particular, in ref./17/,
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Fig.1. The deformation energy (in MeV) in the 1li-
quid~drop model, E;p, (dots) and taking into ac-

count the shell correction, E,

(dashed and solid

curves) as a function of the hexadecapole deforma-
tion ¢, at the fixed deformation a = 0.98. The
solid curve with open points corresponds to the

minimum of E with respect

to ag , ag and a;;. The

definition of the parameters is given in the text

(see. expr.(1)).

Fig.2. The nuclear shape in
the minimum with respect to
‘@, ,ag anday, at e = 0.98
and a4 = -0.093 (a) and a4 =

N
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¢= 0.1 (b). A half-volume
sphere is shown by dots for
comparison.
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